

Welcome to AdvPiStepper’s documentation!

AdvPiStepper is a driver for all kinds of stepper motors, written in Python for the Raspberry Pi, using the pigpio library.

Contents:

	Features
	Uses

	Caveats

	Requirements

	Usage
	Installation
	pigpio

	AdvPiStepper

	Usage

	Tuning

	API

Warning

This program is not finished. It was uploaded to GitHub as a backup.
Feel free to look at the source code and give feedback, but do not expect it to work
in any shape or form.

Features

“Here comes the Hotstepper”
– Ini Kamoze

	Uses acceleration and deceleration ramps.

	Fairly tight timing up to approx. 1500 steps per second (on Raspberry Pi 4) 1.

	Complete API for relative and absolute moves, rotations and continuous running.

	Runs in the background. Motor movements can be blocking or non-blocking.

	Support for microstepping (depending on the driver).

	
	Support for any unipolar stepper motors, like:

	
	28BYJ-48 (very cheap geared stepper)

	
	{TODO} Support for Bipolar stepper drivers / dual H-Bridges like the

	
	L293(D)

	DRV8833

	
	{TODO} Support for Step/Direction controllers like

	
	A4988

	DRV8825

	STSPIN220 / 820

	Other drivers should be easy to implement

	Licensed under the very permissive MIT license.

	100% Python, no dependencies except pigpio.

	1

	At high step rates occasional stutters may occur when some
Python / Linux background tasks run.

Uses

AdvPiStepper is suitable for

	Python projects that need to accuratly control a single stepper motor at reasonable speeds.

	Stepper motor experiments and prototyping.

It is not suitable for

	multi-axis stepper motor projects

	high speeds (> 1500 steps per second)

Caveats

	Currently no support for multiple motors. Single motor only.

	100% Python, therefore no realtime performance - jitter and stutters may occur.

Requirements

“One small step for [a] man”
– Neil Armstrong

AdvPiStepper uses the pigpio [http://abyz.me.uk/rpi/pigpio/]
library to access the Raspberry Pi GPIO pins.
It requires at least V76 of the library, which at the
time of writing has not yet been uploaded to
PyPI.org [https://pypi.org/project/pigpio/]
and therefore has to be
installed manually [http://abyz.me.uk/rpi/pigpio/download.html].

A multicore Raspberry Pi (Model 2/3/4) is recommended so that the
stepper engine with its critical timings can run on a seperate core.
Single Core Pi Models (or heavy load on more than one core) will
have timing jitter - neither Linux nor Python is really suited
for these realtime uses.

Usage

“A journey of a thousand miles begins with a single step”
– Laozi

Installation

pigpio

AdvPiStepper requires the pigpio [http://abyz.me.uk/rpi/pigpio/]
library to work. If the Remote GPIO [https://gpiozero.readthedocs.io/en/stable/remote_gpio.html]
has been enabled in the Raspberry Pi
configuration tool, then the pigpio daemon should already be installed
and running.
Run the following to check if pigpio daemon is installed and its version number:

$ pigpiod -v
76

If either pigpio is not installed or has a version smaller than 76 (the minimum
version required by AdvPiStepper), then refer to the pigpio
download & install [http://abyz.me.uk/rpi/pigpio/download.html] page on how to
install pigpio.

AdvPiStepper

AdvPiStepper can be simply installed with

$ pip install advpistepper

Usage

AdvPiStepper is very simple to use. Here is a small example
using the 28BYJ-48 driver:

import advpistepper

driver = advpistepper.Driver28BYJ48(pink=23, orange=25, yellow=24, blue=22)
stepper = advpistepper.AdvPiStepper(driver)
stepper.move(100, block = True)
stepper.move(-100)
while stepper.

This example will move the stepper motor 100 steps forward, waiting for it to finish, then move
it 100 steps backward without waiting.
Besides the obvious import of advpistepper, using it requires to instantiate a driver.

AdvPiStepper comes with multiple generic and specific drivers, refer to the Drivers Section
of the documentation for more details.
In this example the 28BYJ-48 Driver is used which needs four arguments, the gpio numbers that
the motor is connected to.

When using a motor with a step & direction interface the driver can instantiated like this,
with the step signal on pin 22 and the direction signal on pin 23

driver = advpistepper.DriverStepDirGeneric(step=22, direction=23)

The next line of the example initializes the stepper engine. It needs the driver as an argument
(without it defaults to a no-GPIO driver). It can take an optional argument with a Dict containing
parameters to overwrite the build in default parameters.

The last two lines of the example first move the stepper 100 steps forward, waiting for the move to finish,
then 100 steps backwards without waiting, that is with the move running in the background.

For all commands of AdvPiStepper refer to the API

Tuning

To get the best performance from AdvPiStepper there should be as few
background processes running as possible. For expample, on the AdvPiStepper
development system (Raspi 4) the Desktop process does interfere with the
AdvPiStepper process about every 500ms causing step delays of a few milliseconds,
enough to cause late step pulses at high speeds (>500 steps per second)

[image: _images/timing_glitches_with_X_at_1000sps.svg]If AdvPiStepper is called with root privileges (sudo) it will
decrease the niceness of the backend process to -10. This improves the
timing at high speeds somewhat due to less interference by normal
user processes.

Theory of Operation

“Step by step, Heart to heart, Left, right, left”
– Martika

History

AdvPiStepper was started for a Raspberry Pi project where I needed to move a stepper motor
for 400 +/- a few steps. I wanted acceleration and deceleration ramps because
an early Arduino based prototype had them. As I could not find any suitable RPi library
I started this programm, which quickly spiraled out of control and became this
multipurpose stepper motor controller.

V0.9 Work in Progress - Not officially released

Indices and tables

	Index

	Module Index

	Search Page

Features

“Here comes the Hotstepper”
– Ini Kamoze

	Uses acceleration and deceleration ramps.

	Fairly tight timing up to approx. 1500 steps per second (on Raspberry Pi 4) 1.

	Complete API for relative and absolute moves, rotations and continuous running.

	Runs in the background. Motor movements can be blocking or non-blocking.

	Support for microstepping (depending on the driver).

	
	Support for any unipolar stepper motors, like:

	
	28BYJ-48 (very cheap geared stepper)

	
	{TODO} Support for Bipolar stepper drivers / dual H-Bridges like the

	
	L293(D)

	DRV8833

	
	{TODO} Support for Step/Direction controllers like

	
	A4988

	DRV8825

	STSPIN220 / 820

	Other drivers should be easy to implement

	Licensed under the very permissive MIT license.

	100% Python, no dependencies except pigpio.

	1

	At high step rates occasional stutters may occur when some
Python / Linux background tasks run.

Uses

AdvPiStepper is suitable for

	Python projects that need to accuratly control a single stepper motor at reasonable speeds.

	Stepper motor experiments and prototyping.

It is not suitable for

	multi-axis stepper motor projects

	high speeds (> 1500 steps per second)

Caveats

	Currently no support for multiple motors. Single motor only.

	100% Python, therefore no realtime performance - jitter and stutters may occur.

Requirements

“One small step for [a] man”
– Neil Armstrong

AdvPiStepper uses the pigpio [http://abyz.me.uk/rpi/pigpio/]
library to access the Raspberry Pi GPIO pins.
It requires at least V76 of the library, which at the
time of writing has not yet been uploaded to
PyPI.org [https://pypi.org/project/pigpio/]
and therefore has to be
installed manually [http://abyz.me.uk/rpi/pigpio/download.html].

A multicore Raspberry Pi (Model 2/3/4) is recommended so that the
stepper engine with its critical timings can run on a seperate core.
Single Core Pi Models (or heavy load on more than one core) will
have timing jitter - neither Linux nor Python is really suited
for these realtime uses.

Usage

“A journey of a thousand miles begins with a single step”
– Laozi

Installation

pigpio

AdvPiStepper requires the pigpio [http://abyz.me.uk/rpi/pigpio/]
library to work. If the Remote GPIO [https://gpiozero.readthedocs.io/en/stable/remote_gpio.html]
has been enabled in the Raspberry Pi
configuration tool, then the pigpio daemon should already be installed
and running.
Run the following to check if pigpio daemon is installed and its version number:

$ pigpiod -v
76

If either pigpio is not installed or has a version smaller than 76 (the minimum
version required by AdvPiStepper), then refer to the pigpio
download & install [http://abyz.me.uk/rpi/pigpio/download.html] page on how to
install pigpio.

AdvPiStepper

AdvPiStepper can be simply installed with

$ pip install advpistepper

Usage

AdvPiStepper is very simple to use. Here is a small example
using the 28BYJ-48 driver:

import advpistepper

driver = advpistepper.Driver28BYJ48(pink=23, orange=25, yellow=24, blue=22)
stepper = advpistepper.AdvPiStepper(driver)
stepper.move(100, block = True)
stepper.move(-100)
while stepper.

This example will move the stepper motor 100 steps forward, waiting for it to finish, then move
it 100 steps backward without waiting.
Besides the obvious import of advpistepper, using it requires to instantiate a driver.

AdvPiStepper comes with multiple generic and specific drivers, refer to the Drivers Section
of the documentation for more details.
In this example the 28BYJ-48 Driver is used which needs four arguments, the gpio numbers that
the motor is connected to.

When using a motor with a step & direction interface the driver can instantiated like this,
with the step signal on pin 22 and the direction signal on pin 23

driver = advpistepper.DriverStepDirGeneric(step=22, direction=23)

The next line of the example initializes the stepper engine. It needs the driver as an argument
(without it defaults to a no-GPIO driver). It can take an optional argument with a Dict containing
parameters to overwrite the build in default parameters.

The last two lines of the example first move the stepper 100 steps forward, waiting for the move to finish,
then 100 steps backwards without waiting, that is with the move running in the background.

For all commands of AdvPiStepper refer to the API

Tuning

To get the best performance from AdvPiStepper there should be as few
background processes running as possible. For expample, on the AdvPiStepper
development system (Raspi 4) the Desktop process does interfere with the
AdvPiStepper process about every 500ms causing step delays of a few milliseconds,
enough to cause late step pulses at high speeds (>500 steps per second)

[image: _images/timing_glitches_with_X_at_1000sps.svg]If AdvPiStepper is called with root privileges (sudo) it will
decrease the niceness of the backend process to -10. This improves the
timing at high speeds somewhat due to less interference by normal
user processes.

API

	
advpistepper.stepper

	alias of advpistepper.stepper

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 advpistepper	

 	
 	
 advpistepper.common	

 	
 	
 advpistepper.driver_base	

 	
 	
 advpistepper.driver_unipolar_28byj48	

 	
 	
 advpistepper.driver_unipolar_generic	

 	
 	
 advpistepper.stepper	

 	
 	
 advpistepper.stepper_process	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | V
 | W
 | Z

A

 	
 	ACCEL (advpistepper.stepper_process.State attribute)

 	acceleration (advpistepper.stepper.AdvPiStepper attribute)

 	ACCELERATION (advpistepper.stepper_process.Verb attribute)

 	ACCELERATION_RATE (in module advpistepper.common)

 	ACKNOWLEDGE (advpistepper.stepper_process.Verb attribute)

 	AdvPiStepper (class in advpistepper.stepper)

 	
 	advpistepper (module), [1]

 	advpistepper.common (module)

 	advpistepper.driver_base (module)

 	advpistepper.driver_unipolar_28byj48 (module)

 	advpistepper.driver_unipolar_generic (module)

 	advpistepper.stepper (module)

 	advpistepper.stepper_process (module)

B

 	
 	busy_loop() (advpistepper.stepper_process.StepperProcess method)

C

 	
 	c_0 (advpistepper.stepper_process.ControllerData attribute)

 	c_min (advpistepper.stepper_process.ControllerData attribute)

 	c_n (advpistepper.stepper_process.ControllerData attribute)

 	c_target (advpistepper.stepper_process.ControllerData attribute)

 	calculate_delay (advpistepper.stepper_process.StepperProcess attribute)

 	CCW (in module advpistepper.common)

 	close() (advpistepper.stepper.AdvPiStepper method)

 	Command (class in advpistepper.stepper_process)

 	
 	command_handler() (advpistepper.stepper_process.StepperProcess method)

 	connect_pigpio() (advpistepper.stepper_process.StepperProcess method)

 	continuous() (advpistepper.stepper_process.StepperProcess method)

 	ControllerData (class in advpistepper.stepper_process)

 	current_direction (advpistepper.stepper_process.ControllerData attribute)

 	current_position (advpistepper.stepper.AdvPiStepper attribute)

 	(advpistepper.stepper_process.StepperProcess attribute)

 	current_speed (advpistepper.stepper.AdvPiStepper attribute)

 	CW (in module advpistepper.common)

D

 	
 	db_defaults (advpistepper.driver_base.DriverBase attribute)

 	DEC (advpistepper.stepper_process.State attribute)

 	DECEL (advpistepper.stepper_process.State attribute)

 	decel_steps (advpistepper.stepper_process.ControllerData attribute)

 	deceleration (advpistepper.stepper.AdvPiStepper attribute)

 	DECELERATION (advpistepper.stepper_process.Verb attribute)

 	DECELERATION_RATE (in module advpistepper.common)

 	
 	delay (advpistepper.stepper_process.ControllerData attribute)

 	direction (advpistepper.driver_base.DriverBase attribute)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric attribute)

 	DIRECTION_CHANGE_DELAY (in module advpistepper.common)

 	DIRECTION_INVERT (in module advpistepper.common)

 	Driver28BYJ48 (class in advpistepper.driver_unipolar_28byj48)

 	DriverBase (class in advpistepper.driver_base)

 	DriverUnipolarGeneric (class in advpistepper.driver_unipolar_generic)

E

 	
 	ENGAGE (advpistepper.stepper_process.Verb attribute)

 	engage() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	(advpistepper.stepper.AdvPiStepper method)

 	(advpistepper.stepper_process.StepperProcess method)

 	
 	engaged (advpistepper.driver_base.DriverBase attribute)

F

 	
 	full_steps_per_rev (advpistepper.stepper.AdvPiStepper attribute)

 	
 	FULL_STEPS_PER_REV (advpistepper.stepper_process.Verb attribute)

 	(in module advpistepper.common)

G

 	
 	GET (advpistepper.stepper_process.Verb attribute)

 	
 	get_value() (advpistepper.stepper_process.StepperProcess method)

 	gpio_pins (advpistepper.driver_unipolar_generic.DriverUnipolarGeneric attribute)

H

 	
 	HARD_STOP (advpistepper.stepper_process.Verb attribute)

 	hard_stop() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	(advpistepper.stepper_process.StepperProcess method)

 	
 	hardstop() (advpistepper.stepper.AdvPiStepper method)

I

 	
 	IDLE (advpistepper.stepper_process.State attribute)

 	idle_loop() (advpistepper.stepper_process.StepperProcess method)

 	INC (advpistepper.stepper_process.State attribute)

 	
 	init() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	init_move() (advpistepper.stepper_process.StepperProcess method)

 	is_running (advpistepper.stepper.AdvPiStepper attribute)

M

 	
 	max_speed (advpistepper.driver_base.DriverBase attribute)

 	MAX_SPEED (in module advpistepper.common)

 	MAX_TORQUE_SPEED (in module advpistepper.common)

 	MICROSTEP_CHANGE_AT (advpistepper.stepper_process.Noun attribute)

 	MICROSTEP_DEFAULT (in module advpistepper.common)

 	MICROSTEP_NOT_POSSIBLE (advpistepper.stepper_process.Noun attribute)

 	microstep_options (advpistepper.driver_base.DriverBase attribute)

 	MICROSTEP_OPTIONS (in module advpistepper.common)

 	microsteps (advpistepper.driver_base.DriverBase attribute)

 	(advpistepper.stepper.AdvPiStepper attribute)

 	(advpistepper.stepper_process.StepperProcess attribute)

 	MICROSTEPS (advpistepper.stepper_process.Verb attribute)

 	
 	MOVE (advpistepper.stepper_process.Verb attribute)

 	move() (advpistepper.stepper.AdvPiStepper method)

 	(advpistepper.stepper_process.StepperProcess method)

 	MOVE_DEG (advpistepper.stepper_process.Verb attribute)

 	move_deg() (advpistepper.stepper_process.StepperProcess method)

 	MOVE_RAD (advpistepper.stepper_process.Verb attribute)

 	move_required (advpistepper.stepper_process.StepperProcess attribute)

 	move_to() (advpistepper.stepper.AdvPiStepper method)

 	MOVETO (advpistepper.stepper_process.Verb attribute)

 	moveto() (advpistepper.stepper_process.StepperProcess method)

 	MOVETO_DEG (advpistepper.stepper_process.Verb attribute)

 	moveto_deg() (advpistepper.stepper_process.StepperProcess method)

 	MOVETO_RAD (advpistepper.stepper_process.Verb attribute)

N

 	
 	NOP (advpistepper.stepper_process.Verb attribute)

 	noun (advpistepper.stepper_process.Command attribute)

 	(advpistepper.stepper_process.Result attribute)

 	
 	Noun (class in advpistepper.stepper_process)

P

 	
 	parameters (advpistepper.driver_base.DriverBase attribute)

 	perform_step() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	
 	PIGPIO_ADDR (in module advpistepper.common)

 	PIGPIO_PORT (in module advpistepper.common)

Q

 	
 	QUIT (advpistepper.stepper_process.Verb attribute)

 	
 	quit() (advpistepper.stepper_process.StepperProcess method)

 	quit_now (advpistepper.stepper_process.StepperProcess attribute)

R

 	
 	RELEASE (advpistepper.stepper_process.Verb attribute)

 	release() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	(advpistepper.stepper.AdvPiStepper method)

 	(advpistepper.stepper_process.StepperProcess method)

 	
 	Result (class in advpistepper.stepper_process)

 	RUN (advpistepper.stepper_process.State attribute)

 	(advpistepper.stepper_process.Verb attribute)

 	run() (advpistepper.stepper.AdvPiStepper method)

 	(advpistepper.stepper_process.StepperProcess method)

S

 	
 	set_acceleration() (advpistepper.stepper_process.StepperProcess method)

 	set_deceleration() (advpistepper.stepper_process.StepperProcess method)

 	set_full_steps_per_rev() (advpistepper.stepper_process.StepperProcess method)

 	set_microsteps() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	(advpistepper.stepper_process.StepperProcess method)

 	set_speed() (advpistepper.stepper_process.StepperProcess method)

 	speed (advpistepper.stepper_process.ControllerData attribute)

 	SPEED (advpistepper.stepper_process.Verb attribute)

 	state (advpistepper.stepper_process.ControllerData attribute)

 	State (class in advpistepper.stepper_process)

 	
 	step (advpistepper.stepper_process.ControllerData attribute)

 	STEP_PULSE_DELAY (in module advpistepper.common)

 	STEP_PULSE_LENGTH (in module advpistepper.common)

 	stepper (in module advpistepper)

 	StepperProcess (class in advpistepper.stepper_process)

 	steps_until_change_microsteps() (advpistepper.driver_base.DriverBase method)

 	(advpistepper.driver_unipolar_generic.DriverUnipolarGeneric method)

 	STOP (advpistepper.stepper_process.State attribute)

 	(advpistepper.stepper_process.Verb attribute)

 	stop() (advpistepper.stepper.AdvPiStepper method)

 	(advpistepper.stepper_process.StepperProcess method)

T

 	
 	target_position (advpistepper.stepper.AdvPiStepper attribute)

 	(advpistepper.stepper_process.StepperProcess attribute)

 	
 	target_speed (advpistepper.stepper.AdvPiStepper attribute)

 	(advpistepper.stepper_process.ControllerData attribute)

V

 	
 	VAL_ACCELERATION (advpistepper.stepper_process.Noun attribute)

 	VAL_ACKNOWLEDGE (advpistepper.stepper_process.Noun attribute)

 	VAL_CURRENT_POSITION (advpistepper.stepper_process.Noun attribute)

 	VAL_CURRENT_SPEED (advpistepper.stepper_process.Noun attribute)

 	VAL_DECELERATION (advpistepper.stepper_process.Noun attribute)

 	VAL_FULL_STEPS_PER_REV (advpistepper.stepper_process.Noun attribute)

 	
 	VAL_MICROSTEPS (advpistepper.stepper_process.Noun attribute)

 	VAL_TARGET_POSITION (advpistepper.stepper_process.Noun attribute)

 	VAL_TARGET_SPEED (advpistepper.stepper_process.Noun attribute)

 	value (advpistepper.stepper_process.Result attribute)

 	verb (advpistepper.stepper_process.Command attribute)

 	Verb (class in advpistepper.stepper_process)

W

 	
 	wait() (advpistepper.stepper.AdvPiStepper method)

Z

 	
 	ZERO (advpistepper.stepper_process.Verb attribute)

 	
 	zero() (advpistepper.stepper.AdvPiStepper method)

 	(advpistepper.stepper_process.StepperProcess method)

AdvPiStepper Documentation

The AdvPiStepper Class

The AdvPiStepper class is the main interface

	
class advpistepper.stepper.AdvPiStepper(driver=None, parameters: Dict[str, Any] = None)

	
	Parameters

	
	driver (DriverBase) – The GPIO driver used to translate steps to pigpio pulses
and waves. The stepper may contain some optional info
about the actual stepper motor (max. speed etc.).
Defaults to a dummy driver (no actual gpio).

	parameters (Dict[str,Any]) – Optinal list of parameters to override default values.
Refer to parameters for more details

	
current_position

	The current position of the motor.

The position will be in steps or microsteps from the origin.

While the motor is running the reported current position might lag the true current position
by 1 or more steps due to the asynchrounous nature of AdvPiStepper.

This property is read-only.

	Type

	int

	
target_position

	The current target position of the driver.

This is the position the stepper driver is currently moving to.

This property is read-only.

	Type

	int

	
target_speed

	The selected target speed in steps or microsteps per second.

This is the speed the stepper will accelerate to and maintain during moves.
It is independant of the direction and must be greater than 0.
Setting a target speed of 0 or less will cause a ValueError exception.

Note

High values (>1.000 sps) may cause timing jitter and even lost steps.

	Type

	float

	
current_speed

	The current speed in steps or microsteps per second.

During acceleration / deceleration the current speed will be
less than the target speed. Due to the asynchronous nature of
AdvPiStepper the returned value might lag the actual speed.

This property is read-only.

	Type

	float

	
acceleration

	The current acceleration rate in steps or microsteps per second 2

This property will override any default acceleration rate
set by the driver. Any changes to this rate will be applied
immediately and will affect any ongoing acceleration.

Note

High values may cause lost steps and motor stalls.

The value must be greater than zero. Trying to set a value of 0 or less will
cause a ValueError exception.

	Type

	float

	
deceleration

	The current deceleration rate in steps or microsteps per second 2

This property will override any default deceleration rate
set by the driver. Any changes to this rate will be applied
immediately and will affect any ongoing deceleration.

Note

High values may cause unaccounted steps due to motor inertia.

The value must be greater than zero. Trying to set a value of 0 or less will
cause a ValueError exception.

	Type

	float

	
full_steps_per_rev

	The number of full steps for one complete revolution of the motor.

Overrides any default value that may have been set by the driver.

Is applied immediately and will effect any succeding
move_deg() or moveto_deg() calls.

The value must be 2 or greater. Trying to set a value less of 1 or less will
cause a ValueError exception.

	Type

	int

	
microsteps

	Number of microsteps per full step.

The number must be from the list of supported MICROSTEP_OPTIONS.
Changing microsteps while the stepper motor is running may or may
not work - depending on the driver. Refer to the driver documentation
for changing microsteps while running.
Some drivers need to sync their internal step sequencer before changing
the microstep setting. Therefore the change may happen at some
point in the future without any guarantee about the exact step.

Note

If the microstep setting is changed while the motor is running the
absolute speed will be unchanged, i.e. the target speed (in steps per
second) will be scaled by new_microsteps / old_microsteps.

Trying to set a value that is not supported by the driver will cause a
ValueError exception.

	Type

	int

	
is_running

	Flag to indicate that the the stepper is still running.

	Returns

	True if the stepper engine is not idle.

	
move(steps: int, speed: float = None, block: bool = False)

	Move the given number of steps relative to a position.

If called while the motor is idle the move will be relative to the current
position. If the motor is already executing a move the new move will be
relative to the previous target position. If the motor is running in
continuous mode the new move will be relative to the current position.

	Parameters

	
	steps (int) – Number of steps, full or microsteps.
Positiv for forward / clockwise,
negative for backwards / counterclockwise.

	speed (float) – Target speed in steps or microsteps per second.
Must be >0. Optional, default is the most recent target speed.

	block (bool) – When True waits for the move to complete.
Default False, i.e. call will return immediately.

	Raises

	ValueError – if the speed is 0 or less.

	
move_to(position: int, speed: float = None, block: bool = False)

	Move to the given absolute location.

Location is in steps or microsteps from the origin, which is the position set by zero()
(or the position at initialization) and can be negative.
This can be called while a move is underway.

	Parameters

	
	position (int) – Target position in steps or microsteps.

	speed (float) – Target speed in steps or microsteps per second.
Must be >0. Optional, default is the most recent target speed.

	block (bool) – When True waits for the move to complete.
Default False, i.e. call will return immediately.

	Raises

	ValueError – if the speed is 0 or less.

	
run(direction: int, speed: float = 0.0)

	Run the motor constantly.

The motor will accelerate to and maintain a given speed. It will run
until either stopped with stop() or overriden by any move() / move_to()
call.
This method can only be run as non-blocking for obvious reasons.

	Parameters

	
	direction (int) – Direction of movement. Either CW (1) or CCW (-1).

	speed (float) – Speed in steps per second. Optional, default is target_speed.

	Raises

	ValueError – if either the direction is not CW/CCW or if the speed
is 0 or less.

	
stop(block: bool = False)

	Decelerate the motor to a complete stop.

	Parameters

	block (bool) – When True waits for the stop to complete.
Default False, i.e. call will return immediately.

	
hardstop(block: bool = False)

	Stops the motor immediately.

How the motor is stopped depends on the motor driver. Usually
the driver will just deenergize all motor coils.

Due to inertia calling this on a moving motor will probably cause
unaccounted motor steps. The current_position may not be accurate
anymore and it is up to the caller to get the motor to a consistent
state if so required.

	Parameters

	block (bool) – When True waits for the driver to initiate the hard stop.
Default False, i.e. call will return immediately.

	
wait(timeout: float = None) → bool

	Wait for the current move to finish.

When invoked with a positive, floating-point value for timeout, block for at most the
number of seconds specified by timeout.

Warning

If called without a timeout value while a run() is running this method will
not return.

	Parameters

	timeout – timeout in seconds

	Returns

	True is the move has finished, False if the wait timed out.

	
zero()

	Reset the current position to 0.

If called during a move the move will not be affected, i.e. it will continue
for the given number of steps. But after it has finished the current position
will be the number of steps performed since the call to zero().

	
engage(block: bool = False)

	Energize the coils of the stepper motor.

The coils are automatically engaged by any move / run command.
This method should not be called while the motor is already moving.

	Parameters

	block (bool) – When True waits for the driver to energize.
Default False, i.e. call will return immediately.

	
release(block: bool = False)

	Deenergize the coils of the stepper motor.

Deenergizing the coils will stop the motor from converting current
into heat at the expense of yreduced holding torque.
Also, when using microsteps the motor may (or may not) move to an
adjacent full step.

Calling this method while a move is underway is similar to a hard stop.

	Parameters

	block (bool) – When True waits for the driver to release.
Default False, i.e. call will return immediately.

	
close()

	End the stepper driver.

All resources are released.
This is called automatically when the AdvPiStepper object is garbage collected.

advpistepper.common module

Definitions used by the AdvPiStepper

CW and CCW constants defining clockwise / couterclockwise motions.

The Keys which are used as parameters to describe a motor and the driver.

	DRIVER_NAME Human readable name of the driver.

	MAX_SPEED: Maximum speed in steps per second. This is not a limit, just a recommendation.

	MAX_TORQUE_SPEED: Maximum speed at which the motor will still deliver full torque (optional, if known)

	ACCELERATION_RATE: Acceleration in steps per second squared.

	DECELERATION_RATE: Deceleration in steps per second squared.

	FULL_STEPS_PER_REV: Number of full (not micro-)steps per one revolution.

	MICROSTEP_OPTIONS: Tupel of all microsteps options.

	MICROSTEP_DEFAULT: The prefered microstep rate of the driver.

Other parameters which can be passed to the AdvPiStepper class

	PIGPIO_ADDR: The hostname of the system where the pigpio daemon is running on.

	PIGPIO_PORT: The port on which the pigpio daemon is listening on.

	
advpistepper.common.CW = 1

	Clockwise/forward rotation. Just an internal designation. True
direction may depend on the wiring of the stepper motor.

	
advpistepper.common.CCW = -1

	Counterclockwise/backward rotation. Just an internal designation.
True direction may depend on the wiring of the stepper motor.

	
advpistepper.common.MAX_SPEED = 'max_speed'

	Maximum speed in steps per second. This is not a limit, just a recommendation

	
advpistepper.common.MAX_TORQUE_SPEED = 'max_torque_speed'

	Maximum speed at which the motor will still deliver full torque.

	
advpistepper.common.ACCELERATION_RATE = 'acceleration_rate'

	Acceleration in steps per second squared.

	
advpistepper.common.DECELERATION_RATE = 'deceleration_rate'

	Decelearation in steps per second squared.

	
advpistepper.common.FULL_STEPS_PER_REV = 'full_steps_per_rev'

	Number of full (not micro-)steps per one revolution.

	
advpistepper.common.MICROSTEP_OPTIONS = 'microstep_options'

	Tupel of all microsteps options. Default is only full steps.

	
advpistepper.common.MICROSTEP_DEFAULT = 'microstep_default'

	The prefered microstep rate of the driver.

	
advpistepper.common.PIGPIO_ADDR = 'pigpio_addr'

	The hostname of the system where the pigpio daemon is running on. Default is empty for the localhost.

	
advpistepper.common.PIGPIO_PORT = 'pigpio_port'

	The port on which the pigpio daemon is listening on. Default is empty to use the default pigpio port (8888).

	
advpistepper.common.DIRECTION_INVERT = 'direction_invert'

	If this key exists then the direction signal is inverted by the driver,
i.e. Clockwise and Counterclockwise are swaped.

	
advpistepper.common.DIRECTION_CHANGE_DELAY = 'direction_change_delay'

	The time between a change in direction and the first step pulse (in microseconds)

	
advpistepper.common.STEP_PULSE_LENGTH = 'step_pulse_length'

	The time for a step pulse (in microseconds)

	
advpistepper.common.STEP_PULSE_DELAY = 'step_pulse_delay'

	The minimum time between step pulses (in microseconds)

advpistepper.driver_base module

	
class advpistepper.driver_base.DriverBase(parameters: Dict[str, Any] = None)

	The base class for all stepper drivers.
This class should be subclassed for specfic drivers.

At a minimum a driver should override perform_step()
to generate the gpio pulses. All other methods can be overridden as required.

	
db_defaults = {'acceleration_rate': 1000, 'deceleration_rate': 1000, 'driver_name': 'Debug Driver (No GPIO)', 'full_steps_per_rev': 400, 'max_speed': 1000.0, 'max_torque_speed': 100.0, 'microstep_default': 1, 'microstep_options': (1,)}

	

	
engaged = None

	Falg to indicate that the driver is engaged, i.e. current is supplied to the coils.

	
parameters

	returns the physical parameters of the associated hardware
(driver and motor). See common.py for the list of parameters
:return: Dictionary with a copy of all parameters.
:rtype: Dict[str, Any]

	
max_speed

	Returns the maximum recommended speed in steps per second.
:returns: max speed
:rtype: int

	
microstep_options

	Return a tuple with all microstep options.
:returns: tuple with int microstep options, e.g. (1,2,4,8)
:rtype: Tuple[int]

	
init(pi: pigpio.pi)

	Initializes the driver, setting up the required GPIO pins.
:param pi: the pigpio instance to use.

	
engage()

	Energize the coils.

	
release()

	Deenergize all coils.

	
direction

	The current direction of the motor.
Can be either clockwise (CW / 1) or counterclockwise (CCW / -1).
When changed all subsequent calls to perform_step() will go in
the given direction.
It is up to the caller to ensure that the motor is able to change
the direction of rotation, i.e. has come to a complete stop.

	
microsteps

	The currently set number of microsteps.

This property is read only. Use set_microsteps() to change the microsteps.

	
set_microsteps(steps: int) → bool

	Set the microsteps.

This method will only be successful if the driver is ready for a change in
microsteps, which can be checked with steps_until_change_microsteps() method.

	Parameters

	steps (int) – Value from the list of MICROSTEP_OPTIONS.

	Returns

	‘True’ if the change was successfull, ‘False’ if the microsteps could not be changed.

	
steps_until_change_microsteps(microsteps: int) → int

	Checks when the the requested microstep setting can be changed.

The result is in steps. If the result is 0 the driver is ready for a
change in microsteps. Positive values are the number of steps which have
to be performed before the change is possible (e.g. to sync to the next
full step first). A negative return value means that the driver can not change
to the new value, either because it is not supported or the change can only be
made when the motor is not running.

	Parameters

	microsteps (int) – Requested microstep option, either FULLSTEP (1) or HALFSTEP (2)

	Returns

	number of steps before microsteps value can be changed.
0 if change is possible right now.
negative if the requested microsteps can not be set at the moment.

	Return type

	int

	
perform_step(delay: int) → list

	Returns a list of pigpio pulse objects (a wave) for a single
step lasting delay microseconds.
:param delay: total time for the step.
:return: a pigpio wave (list of pulses)

	
hard_stop()

	Perform a hard stop where the motor is stop immediately, even
at the expense of lost steps.
The default is just to de-energize the coils, but some more
advanced stepper drivers may have braking or other means to come
to a quick stop.
Due to the asynchronous nature of the engine there might be
multiple stepper motor pulses already in the pipeline that will
be transmitted even after a call to hard_stop().
Subclasses should take care that these pulses do not cause any
further motor movement, e.g. by deactivtiong any GPIO output.

advpistepper.driver_unipolar_28byj48 module

Driver for the popular 28BYJ-48 stepper motor.

The 28BYJ-48 is a small, 5V or 12V stepper motor with an integrated reduction gear which
results in 2048 full steps per revolution of the output shaft. Due to the high
reduction gear (64:1), this stepper motor is rather slow.
Without any hacks (e.g. higher voltage; bipolar mods) and without much load
the 28BYJ-48 should be able to do about 15 rpm or about 500 steps per second.

The 28BYJ-48 is a unipolar motor and is often sold together with a small driver board
based on the ULN2003 Darlington array for less than 3€.

This driver just defines the following parameters for this motor, guessed from this
datasheet [https://www.digikey.de/de/datasheets/mikroelektronika/mikroelektronika-step-motor-5v-28byj48-datasheet]
with the help of the stepper motor glossary [https://www.anaheimautomation.com/support/stepper_motor_glossary.htm]

There are numerous variants of the 28BYJ-48 on the market with slightly different parameters, so
these parameters are on the conservative side. Each can be overriden by providing an optional
dictionary with alternative values to the constructor.

	MAX_SPEED: 650 steps/second (~10 rpm)

	MAX_TORQUE_SPEED: 120 steps/second

	ACCELERATION_RATE: 2000 steps / second^2

	DECELERATION_RATE: 4000 steps / second^2

	FULL_STEPS_PER_REV: 2048 Full steps per revolution

	MICROSTEP_OPTIONS: FULLSTEP or HALFSTEP.

	MICROSTEP_DEFAULT: HALFSTEP

Halfstep is the recommended rate for the 28BYJ-48

Besides the motor characteristics this driver uses colors for the 4 control wires which seem
to be standard for all 28BYJ-48 variants.

	pink / orange for A+ and A-

	yellow / blue for B+ and B-

Note

The motor wires should not be connected to the Raspberry directly. To provide sufficient
power to the motor a driver IC like the ULN2003A [https://en.wikipedia.org/wiki/ULN2003A]
should be used.

	
class advpistepper.driver_unipolar_28byj48.Driver28BYJ48(pink, orange, yellow, blue, parameters: Dict[str, Any] = None)

	Bases: advpistepper.driver_unipolar_generic.DriverUnipolarGeneric

	Parameters

	
	pink (int) – GPIO pin the pink wire (A+)is connect to (Broadcom / pigpio numbering)

	orange (int) – GPIO pin the orange wire (A-) is connect to (Broadcom / pigpio numbering)

	yellow (int) – GPIO pin the yellow wire (B+) is connect to (Broadcom / pigpio numbering)

	blue (int) – GPIO pin the blue wire (B-) is connect to (Broadcom / pigpio numbering)

	parameters (dict, optional) – Optional parameters to override the default values.

advpistepper.driver_unipolar_generic module

Driver for generic Unipolar Stepper Motors.

Baseclass for all unipolar [https://en.wikipedia.org/wiki/Stepper_motor#Unipolar_motors]
motor drivers, but can also be used by itself.
It generates the GPIO sequences for eiter FULLSTEP mode, where two coils
are powered for each step, or HALFSTEP mode, wher either one or two coils
are powered at each step.

Unless overridden by a subclass or by the user this driver uses the following
default parameters:

	MAX_SPEED: 800 steps/second (120rpm)

	MAX_TORQUE_SPEED: 100 steps/second

	ACCELERATION_RATE: 2000 steps / second^2

	DECELERATION_RATE: 3000 steps / second^2

	FULL_STEPS_PER_REV: 200 Full steps per revolution (1.8° per step)

	MICROSTEP_OPTIONS: FULLSTEP or HALFSTEP.

	MICROSTEP_DEFAULT: FULLSTEP

Besides the (optional) parameters this driver needs the the 4 GPIO pins connected to
the A+, A-, B+ and B- coils (called a1, a2, b1 and b2 by the driver)

Note

Except for very low power stepper motors the motor wires should not be connected
to the Raspberry directly. To provide sufficient power to the motor a driver like
the ULN2003A [https://en.wikipedia.org/wiki/ULN2003A] should be used.

	
class advpistepper.driver_unipolar_generic.DriverUnipolarGeneric(a1, a2, b1, b2, parameters: Dict[str, Any] = None)

	Bases: advpistepper.driver_base.DriverBase

Basic Unpolar driver module.

	Parameters

	
	a1 (int) – GPIO pin number for coil A+ (pigpio/broadcom numbering)

	a2 (int) – GPIO pin number for coil A- (pigpio/broadcom numbering)

	b1 (int) – GPIO pin number for coil B+ (pigpio/broadcom numbering)

	b2 (int) – GPIO pin number for coil B- (pigpio/broadcom numbering)

	parameters (dict, optional) – Optional parameters to override the default values.

	
gpio_pins

	Tupel with the four GPIO pins used by the driver.
The are in the order A+, A-, B+ and B- and use the Broadcom pin
numbering as used by pigpio.
This property can be written to, however changing the GPIO pins
while the motor is running is propably not a good idea.

	Type

	Tupel with 4 int, 0 <= n <= 56

	
init(pi: pigpio.pi)

	Initialize the driver by setting all GPIO pins to output and to LOW.
This method should only be called by the stepper process.

	Parameters

	pi – the pigpio instance to use.

	
engage()

	Energize the coils.
Only the coils for the current step are energized,
the other coils will not be powered.

	
release()

	Deenergize all coils.

	
set_microsteps(steps: int) → bool

	Set the microsteps.

This method will only be successful if the driver is ready for a change in
microsteps, which can be checked with steps_until_change_microsteps() method.

	Parameters

	steps (int) – either FULLSTEP (1) or HALFSTEP (2)

	Returns

	‘True’ if the change was successfull, ‘False’ if the microsteps could not be changed.

	
steps_until_change_microsteps(microsteps: int) → int

	Checks when the the requested microstep setting can be changed.

The result is in steps. If the result is 0 the driver is ready for a
change in microsteps. Positive values are the number of steps which have
to be performed before the change is possible (e.g. to sync to the next
full step first). A negative return value means that the driver can not change
to the new value, either because it is not supported or the change can only be
made when the motor is not running.

	Parameters

	microsteps (int) – Requested microstep option, either FULLSTEP (1) or HALFSTEP (2)

	Returns

	Either 0 (change possible right now) or 1 (change possibel after the next step).
Negative if microstep was neither 1 nor 2.

	Return type

	int

	
direction

	The current direction of the motor.
Can be either clockwise (CW / 1) or counterclockwise (CCW / -1).
When changed all subsequent calls to perform_step() will go in
the given direction.
It is up to the caller to ensure that the motor is able to change
the direction of rotation, i.e. has come to a complete stop.

	
perform_step(delay: int) → list

	Generate the pigpio wave list for a single step.

The generated wave starts with the given delay and then sets the GPIOs
for the step.

	
hard_stop()

	Perform a hard stop where the motor is stop immediately, even
at the expense of lost steps.
This is done by pulling all 4 GPIO pins to LOW and changing the pins to input
to prevent any steps which are still in the pipeline to go to the motor.

advpistepper.stepper_process module

The backend Process for the AdvPiStepper.

This class accepts commands from the frontend, calculates target positions and speed,
including accelerations and decelerations, and finally converts these into steps and
the time delay between them. A driver is then used to generate pigpio pulse sequences
which can finally be sent to the pigpio daemon for the actual GPIO pulses.

	
class advpistepper.stepper_process.State

	Bases: enum.Enum

Enum of all states of the stepper engine.

	
IDLE = 1

	Stepper is not running and the coils are deenergized.

	
STOP = 2

	Stepper is not running but the coils are energized
to hold the last position.

	
ACCEL = 3

	Stepper is accelerating to the target speed.

	
INC = 4

	After being in the RUN state the stepper is accelerating to
a new target speed.

	
RUN = 5

	Stepper is running at the target speed.

	
DEC = 6

	Stepper is decelerating to a new, slower target speed.

	
DECEL = 7

	Stepper is decelerating to a STOP.

	
class advpistepper.stepper_process.ControllerData(state: int = <State.IDLE: 1>, current_direction: int = 0, c_n: int = 0, c_min: int = 1000, c_0: int = 10000, c_target: int = 2000, delay: int = 0, target_speed: float = 100, speed: float = 0.0, step: int = 0, decel_steps: int = 0)

	Bases: object

Object containing all data for the speed controller.

	
state = 1

	Current state of the stepper.

	
current_direction = 0

	0 = at rest, CW = forward, CCW = backward.

	
c_n = 0

	time from the current step to the next (in microseconds).

	
c_min = 1000

	Minimum time between steps (at max rate) in microseconds.

This determines the maximum speed of the motor.
Default is 1ms (1000steps per second), but the motor stepper driver
should supply a more appropriate value for the connected motor and
its GPIO stepper.

	
c_0 = 10000

	Initial time between steps at the start of a move
(in microseconds). 10000 is just a placeholder. The actual value
is calculated from the set acceleration.

	
c_target = 2000

	Time between steps for the target speed (as set by speed())
(in microseconds).

	
delay = 0

	int: delay until the next step in microseconds.

	
target_speed = 100

	Target speed in steps per second. Default is 100 steps per second.

	
speed = 0.0

	Current speed in steps per second.

	
step = 0

	The current step in the acceleration and deceleration phases.

	
decel_steps = 0

	Number of steps required to decelerate to a full stop.

	
class advpistepper.stepper_process.Verb

	Bases: enum.Enum

List of Commands that can be send to the stepper background process.

	
SPEED = 1

	

	
ACCELERATION = 2

	

	
DECELERATION = 3

	

	
FULL_STEPS_PER_REV = 4

	

	
MICROSTEPS = 5

	

	
MOVE = 6

	

	
MOVE_DEG = 7

	

	
MOVE_RAD = 8

	

	
MOVETO = 9

	

	
MOVETO_DEG = 10

	

	
MOVETO_RAD = 11

	

	
RUN = 12

	

	
STOP = 13

	

	
ZERO = 14

	

	
HARD_STOP = 15

	

	
QUIT = 16

	

	
ENGAGE = 17

	

	
RELEASE = 18

	

	
GET = 19

	

	
NOP = 20

	

	
ACKNOWLEDGE = 21

	

	
class advpistepper.stepper_process.Noun

	Bases: enum.Enum

List of values that can be queried with the GET Verb.

	
VAL_CURRENT_SPEED = 1

	

	
VAL_TARGET_SPEED = 2

	

	
VAL_CURRENT_POSITION = 3

	

	
VAL_TARGET_POSITION = 4

	

	
VAL_ACCELERATION = 5

	

	
VAL_DECELERATION = 6

	

	
VAL_FULL_STEPS_PER_REV = 7

	

	
VAL_MICROSTEPS = 8

	

	
VAL_ACKNOWLEDGE = 9

	

	
MICROSTEP_NOT_POSSIBLE = 10

	

	
MICROSTEP_CHANGE_AT = 11

	

	
class advpistepper.stepper_process.Command(verb: advpistepper.stepper_process.Verb, noun: Union[advpistepper.stepper_process.Noun, int, float] = None)

	Bases: object

Command object passed from the frontend to the background Process.

	
verb = None

	

	
noun = None

	

	
class advpistepper.stepper_process.Result(noun: advpistepper.stepper_process.Noun, value: Union[int, float, bool, advpistepper.stepper_process.Verb])

	Bases: object

Result object passed from the background Process to the frontend.

	
noun = None

	

	
value = None

	

	
class advpistepper.stepper_process.StepperProcess(command_pipe: multiprocessing.context.BaseContext.Pipe, results_pipe: multiprocessing.context.BaseContext.Pipe, run_lock: multiprocessing.context.BaseContext.Lock, driver: advpistepper.driver_base.DriverBase = None, parameters: Dict[str, Any] = None)

	Bases: multiprocessing.context.Process

Stepper engine background process.

	Parameters

	
	command_pipe (multiprocessing.Pipe) – Pipe which will receive Command objects.

	results_pipe (multiprocessing.Pipe) – Pipe where Result objects are send back to the frontend.

	run_lock (multiprocessing.Lock) – A lock which the backend uses while busy

	driver (DriverBase) – The GPIO driver used to translate steps to pigpio pulses
and waves.

	parameters (Dict[str,Any]) – Optinal list of parameters to override default values.

	
current_position = None

	Where the motor is at any given moment in steps/microsteps.

	
target_position = None

	Where the motor should drive to (in steps/microsteps).

	
microsteps = None

	Number of microsteps per full step currently set.Default supplied by driver.

	
move_required = None

	Flag to indicate that the Process has received a command to move the motor

	
quit_now = None

	Flag to indicate that the Process should terminate nicely.

	
run()

	Method to be run in sub-process; can be overridden in sub-class

	
connect_pigpio()

	

	
command_handler(command: advpistepper.stepper_process.Command)

	

	
set_speed(speed)

	

	
set_acceleration(rate: float)

	

	
set_deceleration(rate: float)

	

	
set_full_steps_per_rev(steps: int)

	

	
set_microsteps(steps: int)

	

	
move(relative)

	

	
move_deg(angle: float)

	

	
moveto(absolute)

	

	
moveto_deg(angle: float)

	

	
continuous(direction: int)

	

	
stop()

	

	
zero()

	

	
hard_stop()

	

	
quit()

	

	
engage()

	

	
release()

	

	
get_value(noun: advpistepper.stepper_process.Noun)

	

	
idle_loop()

	

	
init_move()

	

	
busy_loop()

	

	
calculate_delay

	

Module contents

advpistepper

	AdvPiStepper Documentation
	The AdvPiStepper Class

	advpistepper.common module

	advpistepper.driver_base module

	advpistepper.driver_unipolar_28byj48 module

	advpistepper.driver_unipolar_generic module

	advpistepper.stepper_process module

	Module contents

AdvPiStepper

AdvPiStepper is a driver for all kinds of stepper motors, written in Python for the Raspberry Pi,
using the pigpio library.

Warning

This program is not finished. It was uploaded to GitHub as a backup.
Feel free to look at the source code and give feedback, but do not expect it to work
in any shape or form.

The full documentation can be found readthedocs.io [https://advpistepper.readthedocs.io]

Features

“Here comes the Hotstepper”
– Ini Kamoze

	Uses acceleration and deceleration ramps.

	Fairly tight timing up to approx. 1500 steps per second (on Raspberry Pi 4) 1.

	Complete API for relative and absolute moves, rotations and continuous running.

	Runs in the background. Motor movements can be blocking or non-blocking.

	Support for microstepping (depending on the driver).

	
	Support for any unipolar stepper motors, like:

	
	28BYJ-48 (very cheap geared stepper)

	
	{TODO} Support for Bipolar stepper drivers / dual H-Bridges like the

	
	L293(D)

	DRV8833

	
	{TODO} Support for Step/Direction controllers like

	
	A4988

	DRV8825

	STSPIN220 / 820

	Other drivers should be easy to implement

	Licensed under the very permissive MIT license.

	100% Python, no dependencies except pigpio.

	1

	At high step rates occasional stutters may occur when some
Python / Linux background tasks run.

Uses

AdvPiStepper is suitable for

	Python projects that need to accuratly control a single stepper motor at reasonable speeds.

	Stepper motor experiments and prototyping.

It is not suitable for

	multi-axis stepper motor projects

	high speeds (> 1500 steps per second)

Caveats

	Currently no support for multiple motors. Single motor only.

	100% Python, therefore no realtime performance - jitter and stutters may occur.

Requirements

“One small step for [a] man”
– Neil Armstrong

AdvPiStepper uses the pigpio [http://abyz.me.uk/rpi/pigpio/]
library to access the Raspberry Pi GPIO pins.
It requires at least V76 of the library, which at the
time of writing has not yet been uploaded to
PyPI.org [https://pypi.org/project/pigpio/]
and therefore has to be
installed manually [http://abyz.me.uk/rpi/pigpio/download.html].

A multicore Raspberry Pi (Model 2/3/4) is recommended so that the
stepper engine with its critical timings can run on a seperate core.
Single Core Pi Models (or heavy load on more than one core) will
have timing jitter - neither Linux nor Python is really suited
for these realtime uses.

Usage

“A journey of a thousand miles begins with a single step”
– Laozi

Installation

pigpio

AdvPiStepper requires the pigpio [http://abyz.me.uk/rpi/pigpio/]
library to work. If the Remote GPIO [https://gpiozero.readthedocs.io/en/stable/remote_gpio.html]
has been enabled in the Raspberry Pi
configuration tool, then the pigpio daemon should already be installed
and running.
Run the following to check if pigpio daemon is installed and its version number:

$ pigpiod -v
76

If either pigpio is not installed or has a version smaller than 76 (the minimum
version required by AdvPiStepper), then refer to the pigpio
download & install [http://abyz.me.uk/rpi/pigpio/download.html] page on how to
install pigpio.

AdvPiStepper

AdvPiStepper can be simply installed with

$ pip install advpistepper

Usage

AdvPiStepper is very simple to use. Here is a small example
using the 28BYJ-48 driver:

import advpistepper

driver = advpistepper.Driver28BYJ48(pink=23, orange=25, yellow=24, blue=22)
stepper = advpistepper.AdvPiStepper(driver)
stepper.move(100, block = True)
stepper.move(-100)
while stepper.

This example will move the stepper motor 100 steps forward, waiting for it to finish, then move
it 100 steps backward without waiting.
Besides the obvious import of advpistepper, using it requires to instantiate a driver.

AdvPiStepper comes with multiple generic and specific drivers, refer to the Drivers Section
of the documentation for more details.
In this example the 28BYJ-48 Driver is used which needs four arguments, the gpio numbers that
the motor is connected to.

When using a motor with a step & direction interface the driver can instantiated like this,
with the step signal on pin 22 and the direction signal on pin 23

driver = advpistepper.DriverStepDirGeneric(step=22, direction=23)

The next line of the example initializes the stepper engine. It needs the driver as an argument
(without it defaults to a no-GPIO driver). It can take an optional argument with a Dict containing
parameters to overwrite the build in default parameters.

The last two lines of the example first move the stepper 100 steps forward, waiting for the move to finish,
then 100 steps backwards without waiting, that is with the move running in the background.

For all commands of AdvPiStepper refer to the API

Tuning

To get the best performance from AdvPiStepper there should be as few
background processes running as possible. For expample, on the AdvPiStepper
development system (Raspi 4) the Desktop process does interfere with the
AdvPiStepper process about every 500ms causing step delays of a few milliseconds,
enough to cause late step pulses at high speeds (>500 steps per second)

[image: _images/timing_glitches_with_X_at_1000sps.svg]If AdvPiStepper is called with root privileges (sudo) it will
decrease the niceness of the backend process to -10. This improves the
timing at high speeds somewhat due to less interference by normal
user processes.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to AdvPiStepper’s documentation!

 		
 Features

 		
 Uses

 		
 Caveats

 		
 Requirements

 		
 Usage

 		
 Installation

 		
 pigpio

 		
 AdvPiStepper

 		
 Usage

 		
 Tuning

 		
 API

_static/up-pressed.png

_static/up.png

_static/plus.png

